Jilu Wang 王冀鲁
Professor
Harbin Institute of Technology (Shenzhen)
Shenzhen, China
Office: T6502
E-mail:
wangjilu03@gmail.com,
wangjilu@hit.edu.cn
Personal homepage at HITSZ:
http://faculty.hitsz.edu.cn/wangjilu
I'm currently Professor at Harbin Institute of Technology (Shenzhen).
Before joining Harbin Institute of Technology (Shenzhen),
I worked as Assistant Professor (特聘研究员) at Beijing Computational Science Research Center (北京计算科学研究中心), Visiting Assistant Professor at Mississippi State University, and Postdoctoral Research Associate at Florida State University (postdoc mentor: Prof.
Max Gunzburger).
I obtained my PhD degree from City University of Hong Kong (PhD advisor: Prof.
Weiwei Sun) and Bachelor degree from Shandong University.
Research Interests
1. Numerical analysis and scientific computing for the following problems:
- The magneto-hydrodynamic equations
- The semilinear subdiffusion equation
- The nonlinear Schrödinger equation
- Incompressible flow in porous media
- Shallow water equations on a sphere
- Finite element method, convolution quadrature
2. Neural network and machine learning
3. Modelling, analysis, and computation of heat and sweat transport in fibrous media
Find my research on
MathSciNet/
ResearchGate/
Google Scholar.
Research Grants and Programs
- NSFC General program, Principal Investigator, 2025-2028
(国家自然科学基金面上项目,主持)
- NSFC Key program, Co-Investigator, 2022-2026
(国家自然科学基金重点项目,参与)
- NSFC General program, Principal Investigator, 2021-2024
(国家自然科学基金面上项目,主持)
- 国家青年人才计划入选者, 2019
- 深圳市杰出青年基础研究项目, Principal Investigator, 2024-2029
- 深圳市新引进人才科研启动经费,Principal Investigator, 2023-2025
- 深圳市“鹏城孔雀”特聘岗位,2022
- 哈尔滨工业大学(深圳)科研启动经费,Principal Investigator, 2022-2025
- 北京市科协青年人才托举工程,2021
- 中国工程物理研究院院拨经费,Principal Investigator, 2019-2022
Master, Ph.D., and Postdoctoral Positions Available
-
Master, Ph.D., and two-year Postdoctoral Fellow positions are available in Prof. Jilu Wang's research group at Harbin Institute of Technology (Shenzhen).
The postdoctoral fellows will work on the development of new computational methods or numerical analysis for some nonlinear partial differential equations from physical and engineering applications, including the MHD equations, incompressible flow, shallow water equations, by the finite element method or other computational techniques.
Interested candidates may send a CV to me via email for application and more information.
Email address: wangjilu03@gmail.com
Students and Postdocs
- Postdocs:
Z. Yang (2020-2021, Ph.D. @ Northwestern Polytechnical University)
W. Cai (2021-2022, Ph.D. @ Xi'an Jiaotong University)
Z. Xia (2023-present, Ph.D. @ University of Electronic Science and technology)
N. Wang (2023-present, Ph.D. @ Beijing Computational Science Research Center)
B. Yu (2024-present, Ph.D. @ Jilin University)
- Ph.D. Students
N. Wang (2018-2023), X. Gui (2020-2023), M. Zhang (2019-2024), L. Yin (2020-present)
- Master Students
Y. Jiang, G. Zhang, B. Ren, X. Li
-
X. Gui, B. Li, and J. Wang
Improved error estimates for a modified exponential Euler method for the semilinear stochastic heat equation with rough initial data
Sci. China Math., 2024, accepted
-
C. Wang, J. Wang, S.M. Wise, Z. Xia, and L. Xu
Convergence analysis of a temporally second-order accurate finite element scheme for the Cahn-Hilliard-magnetohydrodynamics system of equations
J. Comput. Appl. Math., 436 (2024), Paper No. 115409, 17 pp
-
S. Ma, J. Wang, M. Zhang, and Z. Zhang
Mass- and energy-conserving Gauss collocation methods for the nonlinear Schrödinger equation with a wave operator
Adv. Comput. Math., 49 (2023), Paper No. 77, 38 pp
-
W. Cai, W. Sun, J. Wang, and Z. Yang
Optimal $L^2$ error estimates of unconditionally stable FE schemes for the Cahn-Hilliard-Navier-Stokes system
SIAM J. Numer. Anal., 61 (2023), 1218-1245
-
T. Chu, J. Wang, N. Wang, and Z. Zhang
Optimal-order convergence of a two-step BDF method for the Navier-Stokes equations with H1 initial data
J. Sci. Comput., 96 (2023), Paper No. 62, 22 pp
-
C. Wang, J. Wang, Z. Xia, and L. Xu
Optimal error estimates of a Crank-Nicolson finite element projection method for magnetohydrodynamic equations
ESAIM Math. Model. Numer. Anal., 56 (2022), 767–789
-
M. Gunzburger, B. Li, J. Wang, and Z. Yang
A mass conservative, well balanced, tangency preserving and energy decaying method for the shallow water equations on a sphere
J. Comput. Phys., 457 (2022), article 111067
-
X. Gui, B. Li, and J. Wang
Convergence of renormalized finite element methods for heat flow of harmonic maps
SIAM J. Numer. Anal., 60 (2022), 312–338
-
G. Akrivis, B. Li, and J. Wang
Convergence of a second-order energy-decaying method for the viscous rotating shallow water equation
SIAM J. Numer. Anal., 59 (2021), 265–288
-
B. Li, H. Wang and J. Wang
Well-posedness and numerical approximation of a fractional diffusion equation with a nonlinear variable order
ESAIM Math. Model. Numer. Anal., 55 (2021), 171–207
-
J. Wang, J. Wang and L. Yin
A Single-step correction scheme of Crank-Nicolson convolution quadrature for the subdiffusion equation
J. Sci. Comput., 87 (2021), article 26
-
T. Sun, J. Wang and C. Zheng
Fast evaluation of artificial boundary conditions for advection diffusion equations
SIAM J. Numer. Anal., 58 (2020), 3530–3557
-
B. Li, J. Wang and L. Xu
A convergent linearized Lagrange finite element method for the magneto-hydrodynamic equations in two-dimensional nonsmooth and nonconvex domains
SIAM J. Numer. Anal., 58 (2020), 430–459
-
W. Cai, J. Wang and K. Wang
Convergence analysis of Crank-Nicolson Galerkin-Galerkin FEMs for miscible displacement in porous media
J. Sci. Comput., 83 (2020), Paper No. 25, 26 pp
-
M. Gunzburger and J. Wang
Error analysis of fully discrete finite element approximations to an optimal control problem governed by a time-fractional PDE
SIAM J. Control Optim., 57 (2019), 241-263
-
M. Gunzburger and J. Wang
A second-order Crank-Nicolson scheme for time-fractional PDEs
Int. J. Numer. Anal. & Model., 16 (2019), 225-239
-
M. Gunzburger, B. Li and J. Wang
Convergence of finite element solutions of stochastic partial integro-differential equations driven by white noise
Numer. Math., 141 (2019), 1043-1077
-
M. Gunzburger, B. Li and J. Wang
Sharp convergence rates of time discretization for stochastic time-fractional PDEs subject to additive space-time white noise
Math. Comp., 88 (2019), 1715–1741
-
J. Wang
Unconditional stability and convergence of
Crank-Nicolson Galerkin FEMs for a nonlinear Schrödinger-Helmholtz system
Numer. Math., 139 (2018), 479-503
-
D. Li, H. Liao, W. Sun, J. Wang and J. Zhang
Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems
Commun. Comput. Phys., 24 (2018), 86-103
-
D. Li, J. Wang and J. Zhang
Unconditionally convergent L1-Galerkin FEMs for nonlinear time-fractional Schrödinger equations
SIAM J. Sci. Comput., 39 (2017), A3067-A3088
-
D. Li and J. Wang
Unconditionally optimal error analysis of Crank-Nicolson Galerkin FEMs for a strongly nonlinear parabolic system
J. Sci. Comput., 72 (2017), 892-915
-
W. Sun and J. Wang
Optimal error analysis of Crank-Nicolson schemes for a coupled nonlinear Schrödinger system in 3D
J. Comput. Appl. Math., 317 (2017), 685-699
-
Z. Si, J. Wang and W. Sun
Unconditional stability and error estimates of modified characteristics FEMs for the Navier-Stokes equations
Numer. Math., 134 (2016), 139-161
-
J. Wang, Z. Si and W. Sun
A new error analysis of characteristics-mixed FEMs for miscible displacement in porous media
SIAM J. Numer. Anal., 52 (2014), 3000-3020
-
J. Wang
A new error analysis of Crank-Nicolson Galerkin FEMs for a generalized nonlinear Schrödinger equation
J. Sci. Comput., 60 (2014), 390-407
-
J. Wang and W. Sun
Heat and sweat transport in fibrous media with radiation
European J. Appl. Math., 25 (2014), 307-327
-
B. Li, J. Wang and W. Sun
The stability and convergence of fully discrete Galerkin-Galerkin FEMs for porous medium flows
Commun. Comput. Phys., 15 (2014), 1141-1158
Last Updated: Oct 2024.